Fall 2015 Deep Learning CMPSCI 697L

Deep Learning Lecture 2

Sridhar Mahadevan Autonomous Learning Lab UMass Amherst

Outline

Some topics to be covered:

- 1. Quick review of classic neural nets, single layer, multi layer.
- 2. Where does backprpagation run into difficulties?

3. Examples of new deep architectures: CNNs, max pooling units, etc.

4. Software implementations in Theano, Caffe.

5. Forum discussions.

6. More details on common midterm group project.

Human Brain

 10^{11} neurons of > 20 types, 10^{14} synapses, 1ms–10ms cycle time Signals are noisy "spike trains" of electrical potential

What's new this time around?

- New ideas for preventing overfitting: dropout
- New types of units: RLUs, max pooling
- Lots more data and compute (GPU) power
- New stochastic gradient algorithms
- Renewed interest in convolutional neural networks

Quick Overview of Neural Networks

Simple Model of Neuron

Output is a "squashed" linear function of the inputs:

(a) is a step function or threshold function

(b) is a sigmoid function $1/(1+e^{-x})$

Changing the bias weight $W_{0,i}$ moves the threshold location

Types of units

- Linear: compute weighted sum of inputs
- Perceptrons
- RLU: rectified linear units (negative -> 0)
- Sigmoid units: logistic regression function
- Hyperbolic tangent unit
- Convolutional neural nets filter units

Boolean Functions

McCulloch and Pitts: every Boolean function can be implemented

Perceptrons are limited

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc.

Represents a linear separator in input space:

Generalized Linear Models and Deep Learning

- Statistical models represent relationships between the covariates and response in terms of a systematic component, and a random component.
- Linear regression model: $Y = X\beta + \epsilon$

• Here, $\mu = E(Y) = X\beta$, $E(\epsilon) = 0$, and $cov(\epsilon) = \sigma^2 I$.

Generalized linear models (GLMs) extend this framework to cases where the response variable is binary (e..g, classification) or discrete (e.g,. prediction of counts).

Link Functions

- In GLMs, the concept of a link function is fundamental
- The link function represents the relationship between i linear predictor and the response mean E(Y).
- In linear regression, $\eta = X\beta$, and $E(Y) = \mu$, so the line function is an identity (because $\eta = \mu$).
- If the response is a binary variable, or a probability, the link function has to be modified.
- Linear regression also assumes the variances are constant, but in many problems, variances may depend on the mean.

Logit Function and Logistic Regression

- If the response variable y is binary, we need to change the way the linear predictor is coupled to the response.
- One approach is to use the logistic function:

$$P(y = 1|x, \beta) = \mu(x|\beta) = \frac{e^{\beta^T x}}{1 + e^{\beta^T x}} = \frac{1}{1 + e^{-\beta^T x}}$$
$$P(y = 0|x, \beta) = 1 - \mu(x|\beta) = \frac{1}{1 + e^{\beta^T x}}$$

Inverting the above transformation gives us the *logit* function

$$g(x|\beta) = \log \frac{\mu(x|\beta)}{1 - \mu(x|\beta)} = \beta^T x$$

Logistic Regression

Maximum Likelihood Estimation

- Consider fitting a logistic regression model to a dataset of *n* observations $X = (x^1, y^1), \dots, (x^n, y^n)$.
- The conditional likelihood of a single observation is

$$P(y^{i}|x^{i},\beta) = \mu(x^{i}|\beta)^{y^{i}}(1-\mu(x^{i}|\beta))^{1-y^{i}}$$

The conditional likelihood of the entire dataset is

$$P(Y|X,\beta) = \prod_{i=1}^{n} \mu(x^{i}|\beta)^{y^{i}} (1 - \mu(x^{i}|\beta))^{1-y^{i}}$$

Newton Raphson Method

Newton's method finds the roots of an equation $f(\theta) = 0$.

$$\theta_{t+1} = \theta_t - \frac{f(\theta_t)}{f'(\theta_t)}$$

- Newton's method finds the minimum of a function f.
- The maximum of a function $f(\theta)$ is exactly when its derivative $f'(\theta) = 0$.

$$\theta_{t+1} = \theta_t - \frac{f'(\theta_t)}{f''(\theta_t)}$$

Newton Raphson Method

The gradient of the log likelihood can be written in matrix form as

$$\frac{\partial l(\beta|X,Y)}{\partial \beta} = \sum_{i=1}^{n} x^{i}(y^{i} - \mu(x^{i}|\beta)) = X^{T}(Y - P)$$

The Hessian can be written as
 ^{∂²l(β|X,Y)}/_{∂β∂β^T} = -X^TWX

 The Newton-Raphson algorithm then becomes

$$\begin{split} \beta^{new} &= \beta^{old} + (X^T W X)^{-1} X^T (Y - P) \\ &= (X^T W X)^{-1} X^T W \left(X \beta^{old} + W^{-1} (Y - P) \right) \\ &= (X^T W X)^{-1} X^T W Z \quad \text{where } Z \equiv X \beta^{old} + W^{-1} (Y - P) \end{split}$$

Stochastic Gradient Method

- Newton's method can be expensive since it involves computing and inverting the Hessian matrix.
- Stochastic gradient methods are slower, but computationally cheaper at each time step.

$$\frac{\partial l(\beta|x,y)}{\partial\beta_j} = x_j(y - \mu(x|\beta))$$

The stochastic gradient ascent rule can be written as (for instance (xⁱ, yⁱ))

$$\beta_j \leftarrow \beta_j + \alpha(y^i - \mu(x^i|\beta))x_j^i$$

Logistic Regression in Theano

class LogisticRegression(object):

"""Multi-class Logistic Regression Class

The logistic regression is fully described by a weight matrix :math:`W` and bias vector :math:`b`. Classification is done by projecting data points onto a set of hyperplanes, the distance to which is used to determine a class membership probability.

def __init__(self, input, n_in, n_out):
 """ Initialize the parameters of the logistic regression

:type n_in: int
:param n_in: number of input units, the dimension of the space in
which the datapoints lie

:type n_out: int
:param n_out: number of output units, the dimension of the space in
 which the labels lie

MNIST problem

0 2 3 8 0 7 3 8 5 7

Logistic Regression:MNIST

http://deeplearning.net/tutorial/logreg.html#logreg

mahadeva@manifold:~/Documents/courses/Deep Learning Course UMass Fall 2015/code\$ python logistic_ Using gpu device 0: Tesla K80

Downloading data from http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz

... loading data

... building the model

... training the model

epoch 1, minibatch 83/83, validation error 12.458333 %

epoch 1, minibatch 83/83, test error of best model 12.375000 %

epoch 2, minibatch 83/83, validation error 11.010417 %

epoch 2, minibatch 83/83, test error of best model 10.958333 %

epoch 3, minibatch 83/83, validation error, 10.312500 %

epoch 73, minibatch 83/83, validation error 7.500000 %

epoch 73, minibatch 83/83, test error of best model 7.489583 %

Optimization complete with best validation score of 7.500000 %, with test performance 7.489583 % The code run for 74 epochs, with 24.234342 epochs/sec

Multilayer Perceptrons

Layers are usually fully connected; numbers of hidden units typically chosen by hand

What's hard about training feedforward networks?

There are training signals for the output and input layers. But, what are the hidden nodes supposed to compute?

Feedforward Networks

Feed-forward network = a parameterized family of nonlinear functions:

$$a_{5} = g(W_{3,5} \cdot a_{3} + W_{4,5} \cdot a_{4})$$

= $g(W_{3,5} \cdot g(W_{1,3} \cdot a_{1} + W_{2,3} \cdot a_{2}) + W_{4,5} \cdot g(W_{1,4} \cdot a_{1} + W_{2,4} \cdot a_{2}))$

Gradient Learning Rule

Learn by adjusting weights to reduce error on training set

The squared error for an example with input \mathbf{x} and true output y is

$$E = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - h_{\mathbf{W}}(\mathbf{x}))^2 ,$$

Perform optimization search by gradient descent:

$$\frac{\partial E}{\partial W_j} = Err \times \frac{\partial Err}{\partial W_j} = Err \times \frac{\partial}{\partial W_j} \left(y - g(\sum_{j=0}^n W_j x_j) \right)$$
$$= -Err \times g'(in) \times x_j$$

Simple weight update rule:

 $W_j \leftarrow W_j + \alpha \times Err \times g'(in) \times x_j$

E.g., +ve error \Rightarrow increase network output

 \Rightarrow increase weights on +ve inputs, decrease on -ve inputs

Backpropagation

Forward propagation: compute activation levels of each unit on a particular input

Backpropagation: compute errors

Gradient Training Rule

The squared error on a single example is defined as

$$E = \frac{1}{2} \sum_{i} (y_i - a_i)^2 ,$$

where the sum is over the nodes in the output layer.

$$\frac{\partial E}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial a_i}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial g(in_i)}{\partial W_{j,i}}$$
$$= -(y_i - a_i)g'(in_i) \frac{\partial in_i}{\partial W_{j,i}} = -(y_i - a_i)g'(in_i) \frac{\partial}{\partial W_{j,i}} \left(\sum_{j} W_{j,i} a_j\right)$$
$$= -(y_i - a_i)g'(in_i)a_j = -a_j \Delta_i$$

Hidden Units

Backpropagation Algorithm

- Given: training examples {(x_i,y_i)}, network
- Randomly set initial weights of network
- Repeat
 - For each training example
 - Compute error beginning with output units, and then for each hidden layer of units
 - Adjust weights in direction of lower error
- Until error is acceptable

Backpropagation Algorithm

- Initialize weights to small random values
- REPEAT
 - For each training example:
 - FORWARD PROPAGATION: Fix network inputs using training example and compute network outputs
 - BACKPROPAGATION:
- For output unit k, compute delta value $\Delta_k = a_k (I a_k)(t_k a_k)$
- Compute delta values of hidden units

$$\Delta_{h} = a_{h} (I - a_{h}) \Sigma_{k} W_{hk} \Delta_{k}$$

• Update each network weight

$$W_{ij} = W_{ij} + \eta a_i \Delta_j$$

Facial Pose Detection

Tom Mitchell (CMU)

"Hinton" diagram (showing activation of hidden units)

"Sunglass detector"

Hidden Unit Detectors

ALVINN

ALVINN learns from a human driver

Neural Network

Can drive on actual highways at 70 miles per hour!

ALVINN training

Examples of roads traversed by ALVINN

ALVINN training

Synthetic training data data from actual data

MNIST problem

0 2 3 8 0 7 3 8 5 7

MNIST using feedforward networks in Theano

http://deeplearning.net/tutorial/code/mlp.py

epoch 995, minibatch 2500/2500, validation error 1.700000 % epoch 996, minibatch 2500/2500, validation error 1.700000 % epoch 997, minibatch 2500/2500, validation error 1.700000 % epoch 998, minibatch 2500/2500, validation error 1.700000 % epoch 1000, minibatch 2500/2500, validation error 1.700000 % Optimization complete. Best validation score of 1.690000 % obtained at iteration 2070000, with test performance 1.650000 %

The code for file mlp.py ran for 45.72m

Le Cun, 1998)

Digit Recognition

3-nearest-neighbor = 2.4% error 400-300-10 unit MLP = 1.6% error LeNet: 768-192-30-10 unit MLP = 0.9%

Gradient of Sigmoid

Vanishing gradient problem!

1990 vs. 2015

Sharp Left

Straight Ahead

Sharp Right

4 Hidden

Units

<u>Year 2014</u>

[Szegedy arxiv 2014]

[Simonyan arxiv 2014] [He arxiv 2014]

Rectified Linear Units

RLUs for speech recognition

Fig. 3. Frame accuracy as a function of time for a 4 hidden layer neural net trained with either logistic or ReLUs and using as optimizer either SGD or SGD with Adagrad (ADG).

Sparse propagation

Specifying LeNet in Caffe

https://developers.google.com/protocol-buffers/docs/overview

```
name: "LeNet"
       layer {
                            Data layer
         name: "mnist"
         type: "Data"
         data param {
           source: "mnist_train_lmdb"
layer {
           backend: LMDB
                                        name: "conv1"
           batch size: 64
                                        type: "Convolution"
           scale: 0.00390625
                                        param { lr mult: 1 }
         }
                                        param { lr mult: 2 }
         top: "data"
         top: "label"
                                        convolution param {
       }
                                          num output: 20
                                          kernel size: 5
                                          stride: 1
                                                                Convolution layer
                                          weight filler {
                                            type: "xavier"
                                          }
                                          bias filler {
                                            type: "constant"
                                          }
                                        }
                                        bottom: "data"
                                        top: "conv1"
                                      }
```

Max Pooling and RLU Layer

```
layer {
  name: "pool1"
  type: "Pooling"
  pooling_param {
    kernel_size: 2
    stride: 2
    pool: MAX
  }
  bottom: "conv1"
  top: "pool1"
}
```

Convolution layer

layer {
 name: "relu1"
 type: "ReLU"
 bottom: "ip1"
 top: "ip1"
}

Loss Layer

```
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "ip2"
  bottom: "label"
}
```

MNIST solver in Caffe

The train/test net protocol buffer definition net: "examples/mnist/lenet train test.prototxt" # test iter specifies how many forward passes the test should carry out. # In the case of MNIST, we have test batch size 100 and 100 test iterations, # covering the full 10,000 testing images. test iter: 100 # Carry out testing every 500 training iterations. test interval: 500 # The base learning rate, momentum and the weight decay of the network. base lr: 0.01 momentum: 0.9 weight decay: 0.0005 # The learning rate policy lr policy: "inv" gamma: 0.0001 power: 0.75 # Display every 100 iterations display: 100 # The maximum number of iterations max iter: 10000 # snapshot intermediate results snapshot: 5000 snapshot prefix: "examples/mnist/lenet" # solver mode: CPU or GPU solver mode: GPU

Running LeNet on Caffe

I0917 19:20:26.375691 26575 layer_factory.hpp:75] Creating layer mnist
I0917 19:20:26.375877 26575 net.cpp:110] Creating Layer mnist
I0917 19:20:26.375903 26575 net.cpp:432] mnist -> data
I0917 19:20:26.375928 26575 net.cpp:432] mnist -> label
I0917 19:20:26.378226 26581 db_lmdb.cpp:22] Opened Imdb examples/mnist/mnist_test_Imdb
I0917 19:20:26.378762 26575 data_layer.cpp:44] output data size: 100,1,28,28
I0917 19:20:26.380553 26575 net.cpp:155] Setting up mnist
I0917 19:20:26.380594 26575 net.cpp:163] Top shape: 100 1 28 28 (78400)
I0917 19:20:26.380614 26575 net.cpp:163] Top shape: 100 (100)
I0917 19:20:26.380635 26575 layer_factory.hpp:75] Creating layer label_mnist_1_split
I0917 19:20:26.380688 26575 net.cpp:110] Creating Layer label_mnist_1_split
I0917 19:20:26.380686 26575 net.cpp:476] label_mnist_1_split <- label</p>
I0917 19:20:26.380707 26575 net.cpp:432] label_mnist_1_split -> label_mnist_1_split_0
I0917 19:20:26.380738 26575 net.cpp:432] label_mnist_1_split -> label_mnist_1_split_0
I0917 19:20:26.380738 26575 net.cpp:432] label_mnist_1_split -> label_mnist_1_split_0
I0917 19:20:26.380738 26575 net.cpp:432] label_mnist_1_split -> label_mnist_1_split_1

 10917 19:20:26.405414 26575 solver.cpp:266] Learning Rate Policy: inv

 10917 19:20:26.406183 26575 solver.cpp:310] Iteration 0, Testing net (#0)

 10917 19:20:26.601101 26575 solver.cpp:359]

 Test net output #0: accuracy = 0.0777

 10917 19:20:26.601132 26575 solver.cpp:359]

 Test net output #1: loss = 2.3651 (* 1 = 2.3651 loss)

 10917 19:20:26.604207 26575 solver.cpp:222] Iteration 0, loss = 2.34867

 10917 19:20:26.604233 26575 solver.cpp:238]

10917 19:20:59.081962 26575 solver.cpp:291] Iteration 10000, loss = 0.00325083
10917 19:20:59.081985 26575 solver.cpp:310] Iteration 10000, Testing net (#0)
10917 19:20:59.215575 26575 solver.cpp:359] Test net output #0: accuracy = 0.9904
10917 19:20:59.215605 26575 solver.cpp:359] Test net output #1: loss = 0.0291382 (* 1 = 0.0291382 loss)
10917 19:20:59.215615 26575 solver.cpp:296] Optimization Done.
10917 19:20:59.215622 26575 caffe.cpp:184] Optimization Done.

real 0m34.403s user 0m27.744s sys 0m25.308s

New Stochastic Gradient Methods

 $x_{k+1} = \nabla \psi^* \left(\nabla \psi(x_k) - t_k \partial f(x_k) \right)$

Mirror Maps

(Nemirovski and Yudin, 1980s; Bubeck, 2014)

"Natural" Gradients on Manifolds

In a manifold, gradients live in the tangent space, not in the original space

Mirror Descent => "Natural" Gradient (Nemirovsky and Yudin; Amari, 1980s)

Thomas, Dabney, Mahadevan, Giguere, NIPS 2013

Natural Neural Network (DesJardin et al., Deep Mind, 2015)

Builds on our recent identification of mirror descent and natural gradient methods

Group Midterm Project

- Atari Game Deep Reinforcement Learning
- Each group will be tested on the same suite of Atari problems
- Groups will be given code to run the Atari games and the deep learning package(s)
- Groups are free to modify hyperparameters or introduce architectural innovations

Summary

- Training deep neural networks is an old idea
- The original back propagation idea goes back to the early 80s (or even before!)
- Sigmoid units have the problem of vanishing gradients
- New rectified linear units provide improved results
- Faster stochastic gradient methods are being used
- Start working more actively with Caffe, Theano etc.