
Fall 2015 Deep Learning CMPSCI 697L

Deep Learning
Lecture 2

Sridhar Mahadevan
Autonomous Learning Lab
UMass Amherst

COLLEGE

Outline
Some topics to be covered:

1. Quick review of classic neural nets, single layer, multi layer.

2. Where does backprpagation run into difficulties?

3. Examples of new deep architectures: CNNs, max pooling units,
etc.

4. Software implementations in Theano, Caffe.

5. Forum discussions.

6. More details on common midterm group project.

Human Brain
Brains

1011 neurons of > 20 types, 1014 synapses, 1ms–10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Chapter 19, Sections 1–5 3

What’s new this time
around?

• New ideas for preventing overfitting: dropout

• New types of units: RLUs, max pooling

• Lots more data and compute (GPU) power

• New stochastic gradient algorithms

• Renewed interest in convolutional neural networks

Quick Overview of
Neural Networks

Simple Model of NeuronMcCulloch–Pitts “unit”

Output is a “squashed” linear function of the inputs:

ai ← g(ini) = g
(

ΣjWj,iaj

)

Output

Σ

Input
Links

Activation
Function

Input
Function

Output
Links

a0 = −1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj

Chapter 19, Sections 1–5 4

Real neurons are
much more complex!

Activation Function
Activation functions

(a) (b)

+1 +1

iniini

g(ini)g(ini)

(a) is a step function or threshold function

(b) is a sigmoid function 1/(1 + e−x)

Changing the bias weight W0,i moves the threshold location

Chapter 19, Sections 1–5 5

Types of units
• Linear: compute weighted sum of inputs

• Perceptrons

• RLU: rectified linear units (negative -> 0)

• Sigmoid units: logistic regression function

• Hyperbolic tangent unit

• Convolutional neural nets filter units

Boolean FunctionsImplementing logical functions

AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 = 0.5

NOT

W1 = 1

W0 = 0.5

McCulloch and Pitts: every Boolean function can be implemented

Chapter 19, Sections 1–5 6

W0 = - 0.5

W1 = - 1

Perceptrons are limitedExpressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc.

Represents a linear separator in input space:

ΣjWjxj > 0 or W · x > 0

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)

0 1

0

1

0

1 1

0

0 1 0 1

xor I 2I 1orI 1 I 2and I 1 I 2

Chapter 19, Sections 1–5 10

Generalized Linear Models
and Deep LearningOverview

Statistical models represent relationships between the
covariates and response in terms of a systematic
component, and a random component.

Linear regression model: Y = Xβ + ϵ

Here, µ = E(Y) = Xβ, E(ϵ) = 0, and cov(ϵ) = σ2I.

Generalized linear models (GLMs) extend this
framework to cases where the response variable is
binary (e..g, classification) or discrete (e.g,. prediction
of counts).

©Sridhar Mahadevan: CMPSCI 689 – p. 2/3

Link FunctionsLink Functions
In GLMs, the concept of a link function is fundamental.

The link function represents the relationship between a
linear predictor and the response mean E(Y).

In linear regression, η = Xβ, and E(Y) = µ, so the link
function is an identity (because η = µ).

If the response is a binary variable, or a probability, the
link function has to be modified.

Linear regression also assumes the variances are
constant, but in many problems, variances may
depend on the mean.

©Sridhar Mahadevan: CMPSCI 689 – p. 3/3

Logit Function and Logistic
RegressionLogit Function

If the response variable y is binary, we need to change
the way the linear predictor is coupled to the response.

One approach is to use the logistic function:

P (y = 1|x,β) = µ(x|β) =
eβT x

1 + eβT x
=

1

1 + e−βT x

P (y = 0|x,β) = 1 − µ(x|β) =
1

1 + eβT x

Inverting the above transformation gives us the logit
function

g(x|β) = log
µ(x|β)

1 − µ(x|β)
= βT x

©Sridhar Mahadevan: CMPSCI 689 – p. 5/3

Logistic RegressionLogistic Regression

y

X1 X0X2

�2 �1
�0

©Sridhar Mahadevan: CMPSCI 689 – p. 6/3

Maximum Likelihood
EstimationMaximum Likelihood

Estimation
Consider fitting a logistic regression model to a dataset
of n observations X = (x1, y1), . . . , (xn, yn).

The conditional likelihood of a single observation is

P (yi|xi,β) = µ(xi|β)yi
(1 − µ(xi|β))1−yi

The conditional likelihood of the entire dataset is

P (Y |X,β) =
n∏

i=1

µ(xi|β)yi
(1 − µ(xi|β))1−yi

The conditional log-likelihood is then simply

l(β|X,Y) =
n∑

i=1

yi log µ(xi|β) + (1 − yi) log(1 − µ(xi|β))
©Sridhar Mahadevan: CMPSCI 689 – p. 13/3

Newton Raphson MethodNewton-Raphson Method
Newton’s method finds the roots of an equation
f(θ) = 0.

θt+1 = θt −
f(θt)

f ′(θt)

Newton’s method finds the minimum of a function f .

The maximum of a function f(θ) is exactly when its
derivative f ′(θ) = 0.

θt+1 = θt −
f ′(θt)

f ′′(θt)

©Sridhar Mahadevan: CMPSCI 689 – p. 15/3

Newton Raphson Method
Iterative Weighted Least
Squares

The gradient of the log likelihood can be written in
matrix form as

∂l(β|X,Y)

∂β
=

n∑

i=1

xi(yi − µ(xi|β)) = XT (Y − P)

The Hessian can be written as ∂2l(β|X,Y)
∂β∂βT = −XT WX

The Newton-Raphson algorithm then becomes

βnew = βold + (XT WX)−1XT (Y − P)

= (XT WX)−1XT W
(
Xβold + W−1(Y − P)

)

= (XT WX)−1XT WZ where Z ≡ Xβold + W−1(Y − P)

©Sridhar Mahadevan: CMPSCI 689 – p. 18/3

Stochastic Gradient MethodStochastic Gradient
Ascent

Newton’s method can be expensive since it involves
computing and inverting the Hessian matrix.

Stochastic gradient methods are slower, but
computationally cheaper at each time step.

∂l(β|x, y)

∂βj
= xj(y − µ(x|β))

The stochastic gradient ascent rule can be written as
(for instance (xi, yi))

βj ← βj + α(yi − µ(xi|β))xi
j

Convergence requires decaying the learning rate α.
©Sridhar Mahadevan: CMPSCI 689 – p. 20/3

Logistic Regression in
Theano

class	 LogisticRegression(object):	
	 	 	 	 """Multi-‐class	 Logistic	 Regression	 Class	

	 	 	 	 The	 logistic	 regression	 is	 fully	 described	 by	 a	 weight	 matrix	 :math:`W`	
	 	 	 	 and	 bias	 vector	 :math:`b`.	 Classification	 is	 done	 by	 projecting	 data	
	 	 	 	 points	 onto	 a	 set	 of	 hyperplanes,	 the	 distance	 to	 which	 is	 used	 to	
	 	 	 	 determine	 a	 class	 membership	 probability.	
	 	 	 	 """	

	 	 	 	 def	 __init__(self,	 input,	 n_in,	 n_out):	
	 	 	 	 	 	 	 	 """	 Initialize	 the	 parameters	 of	 the	 logistic	 regression	

	 	 	 	 	 	 	 	 :type	 input:	 theano.tensor.TensorType	
	 	 	 	 	 	 	 	 :param	 input:	 symbolic	 variable	 that	 describes	 the	 input	 of	 the	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 architecture	 (one	 minibatch)	

	 	 	 	 	 	 	 	 :type	 n_in:	 int	
	 	 	 	 	 	 	 	 :param	 n_in:	 number	 of	 input	 units,	 the	 dimension	 of	 the	 space	 in	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 which	 the	 datapoints	 lie	

	 	 	 	 	 	 	 	 :type	 n_out:	 int	
	 	 	 	 	 	 	 	 :param	 n_out:	 number	 of	 output	 units,	 the	 dimension	 of	 the	 space	 in	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 which	 the	 labels	 lie

MNIST problem

Logistic Regression:MNIST
http://deeplearning.net/tutorial/logreg.html#logreg

mahadeva@manifold:~/Documents/courses/Deep Learning Course UMass Fall 2015/code$ python logistic_sgd.py
Using gpu device 0: Tesla K80
Downloading data from http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz
... loading data
... building the model
... training the model
epoch 1, minibatch 83/83, validation error 12.458333 %
 epoch 1, minibatch 83/83, test error of best model 12.375000 %
epoch 2, minibatch 83/83, validation error 11.010417 %
 epoch 2, minibatch 83/83, test error of best model 10.958333 %
epoch 3, minibatch 83/83, validation error 10.312500 %

epoch 73, minibatch 83/83, validation error 7.500000 %
 epoch 73, minibatch 83/83, test error of best model 7.489583 %
Optimization complete with best validation score of 7.500000 %,with test performance 7.489583 %
The code run for 74 epochs, with 24.234342 epochs/sec

http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz

Multilayer Perceptrons
Multilayer perceptrons

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Input units

Hidden units

Output units ai

Wj,i

aj

Wk,j

ak

Chapter 19, Sections 1–5 13

What’s hard about training
feedforward networks?Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Chapter 19, Sections 1–5 8

There are training signals for the
output and input layers. But, what are

the hidden nodes supposed to
compute?

Feedforward Networks
Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Chapter 19, Sections 1–5 8

Gradient Learning Rule
Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

E =
1

2
Err

2 ≡
1

2
(y − hW(x))2 ,

Perform optimization search by gradient descent:

∂E

∂Wj
= Err ×

∂Err

∂Wj
= Err ×

∂

∂Wj

(

y − g(Σn
j = 0Wjxj)

)

= −Err × g′(in)× xj

Simple weight update rule:

Wj ← Wj + α×Err × g′(in)×xj

E.g., +ve error ⇒ increase network output
⇒ increase weights on +ve inputs, decrease on -ve inputs

Chapter 19, Sections 1–5 11

Backpropagation
Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Chapter 19, Sections 1–5 8

Forward propagation: compute
activation levels of each unit on a

particular input

Backpropagation: compute errors

Gradient Training Rule
Back-propagation derivation

The squared error on a single example is defined as

E =
1

2
∑

i
(yi − ai)

2 ,

where the sum is over the nodes in the output layer.

∂E

∂Wj,i
= −(yi − ai)

∂ai

∂Wj,i
= −(yi − ai)

∂g(in i)

∂Wj,i

= −(yi − ai)g
′(in i)

∂in i

∂Wj,i
= −(yi − ai)g

′(in i)
∂

∂Wj,i

⎛

⎜

⎝

∑

j
Wj,iaj

⎞

⎟

⎠

= −(yi − ai)g
′(in i)aj = −aj∆i

Chapter 19, Sections 1–5 16

Hidden UnitsBack-propagation derivation contd.

∂E

∂Wk,j
= −

∑

i
(yi − ai)

∂ai

∂Wk,j
= −

∑

i
(yi − ai)

∂g(in i)

∂Wk,j

= −
∑

i
(yi − ai)g

′(in i)
∂in i

∂Wk,j
= −

∑

i
∆i

∂

∂Wk,j

⎛

⎜

⎝

∑

j
Wj,iaj

⎞

⎟

⎠

= −
∑

i
∆iWj,i

∂aj

∂Wk,j
= −

∑

i
∆iWj,i

∂g(inj)

∂Wk,j

= −
∑

i
∆iWj,ig

′(inj)
∂inj

∂Wk,j

= −
∑

i
∆iWj,ig

′(inj)
∂

∂Wk,j

⎛

⎜

⎝

∑

k
Wk,jak

⎞

⎟

⎠

= −
∑

i
∆iWj,ig

′(inj)ak = −ak∆j

Chapter 19, Sections 1–5 17

Backpropagation Algorithm

• Given: training examples {(xi,yi)}, network

• Randomly set initial weights of network

• Repeat

• For each training example

• Compute error beginning with output units,
and then for each hidden layer of units

• Adjust weights in direction of lower error

• Until error is acceptable

Backpropagation Algorithm

• Initialize weights to small random values

• REPEAT

• For each training example:

• FORWARD PROPAGATION: Fix network inputs using
training example and compute network outputs

• BACKPROPAGATION:

• For output unit k, compute delta value Δk = ak (1-ak)(tk - ak)

• Compute delta values of hidden units

Δh = ah (1 - ah) Σk Whk Δk

• Update each network weight

Wij = Wij + η ai Δj

Facial Pose Detection

Tom Mitchell (CMU)

“Hinton”
diagram

(showing activation of
hidden units)

“Sunglass
detector”

Hidden Unit Detectors

... ...

ALVINN

Neural
Network

ALVINN learns
from a human driver

Can drive on actual highways at 70
miles per hour!

ALVINN training

Examples of roads traversed by ALVINN

ALVINN training

Synthetic
training

data
created
from
actual
data

MNIST problem

MNIST using feedforward
networks in Theano

http://deeplearning.net/tutorial/code/mlp.py

epoch 995, minibatch 2500/2500, validation error 1.700000 %
epoch 996, minibatch 2500/2500, validation error 1.700000 %
epoch 997, minibatch 2500/2500, validation error 1.700000 %
epoch 998, minibatch 2500/2500, validation error 1.700000 %
epoch 999, minibatch 2500/2500, validation error 1.700000 %
epoch 1000, minibatch 2500/2500, validation error 1.700000 %
Optimization complete. Best validation score of 1.690000 % obtained at iteration 2070000, with test performance
1.650000 %
The code for file mlp.py ran for 45.72m

LeNet Network
(Le Cun, 1998)

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Digit Recognition
Handwritten digit recognition

3-nearest-neighbor = 2.4% error
400–300–10 unit MLP = 1.6% error
LeNet: 768–192–30–10 unit MLP = 0.9%

Chapter 19, Sections 1–5 20

Gradient of Sigmoid

-10 -5 5 10

0.05

0.10

0.15

0.20

0.25

Vanishing
gradient
problem!

�

0(x) =
e

�x

(1 + e

�x)2

1990 vs. 2015

Learning to drive

Lecture 1 - !
!
!

Fei-Fei Li & Andrej Karpathy!

ConvoluHon'
Pooling'
SoMmax'
Other'

GoogLeNet VGG MSRA SuperVision

[Krizhevsky NIPS 2012]

Year 2012 Year 2014 Year 2010

Dense'grid'descriptor:'
HOG,'LBP'

Coding:'local'coordinate,'
super"vector'

Pooling,'SPM'

Linear'SVM'

NEC-UIUC

[Lin CVPR 2011] [Szegedy arxiv 2014] [Simonyan arxiv 2014] [He arxiv 2014]

5"Jan"15'31'

Rectified Linear Units

f(x) = max(x,0)

ˆ

f(x) = log(e

x

+ 1)

RLUs for speech recognition

computation across several cores. Parallel distributed compu-
tation is used across the samples in a mini-batch as well as
across the nodes of the neural network.

In the experiments of sec. 5 we use this framework and
learn the parameters of the system by asynchronous stochastic
gradient descent (SGD) [10]. Training proceeds as follows.
The network is replicated P times. Each replica is an ex-
act copy of the model, with possibly slightly stale parameters
and operating on a random subset of the training data. Be-
sides the P replicas, there is also a sharded parameter server
hosting the most updated version of the parameters. Once
a model replica has finished computing the gradients on its
mini-batch, it sends them to the parameters server which uses
them to update the parameters. Finally, the parameter server
sends back an updated copy of the parameters to that model
replica. This mechanism allows many model replicas to work
concurrently but asynchronously on the same training prob-
lem and to quickly update the parameters, while being toler-
ant to machine failure and high latency.

In this work, we investigated three different ways to up-
date the parameters in the parameter server. Let ✓ti be the i-th
parameter after t � 1 weight updates. In vanilla SGD the pa-
rameters are updated using: ✓t+1

i = ✓ti�⌘@L/@✓ti , where ⌘ is
the learning rate. In SGD with Adagrad [10, 15], each param-
eter has its own adaptive learning rate; the parameter update

is ✓t+1
i = ✓ti � ⌘ti@L/@✓

t
i with ⌘ti = ⌘/

qPt
s=1(@L/@✓

s
i)

2.
Finally, in SGD with momentum the parameters are updated
by: ✓t+1

i = ✓ti � ⌘�t+1
i , with �

t+1
i = 0.9�t

i + @L/@✓ti .
While Adagrad aims at gently scaling and annealing learn-
ing rates, momentum speeds up learning along those gradient
directions that are persistent during training.

5. EXPERIMENTS

All experiments are performed using several hundred hours of
US English data collected using Voice Search, Voice Typing
and read data. The test set follows the same distribution of
the training set but uses independent sources. The setup for
the hybrid decoding is exactly the same as the one described
in earlier work [16].

In the supervised setting, a baseline GMM-HMM system
is trained and used to generate 7969 context-dependent tied
acoustic states. This system is also used to produce state la-
bels for every input frame using forced alignment. These la-
bels are the target for the supervised network.

In both the supervised and unsupervised settings, the input
to the network consists of 26 consecutive frames, each com-
prising 40 log-energy filter bank outputs representing 25ms of
speech. Consecutive frames are 10ms apart. The overall in-
put dimensionality is 1040, although spectral analysis reveals
that 95% of the variance is concentrated in the first leading
100-dimensional principal components.

All layers of our networks have 2560 hidden units and
training has been performed by partitioning each network

Fig. 2. Frame accuracy as a function of time of a 4 hidden
layer HNN trained with different optimizers.

Fig. 3. Frame accuracy as a function of time for a 4 hidden
layer neural net trained with either logistic or ReLUs and us-
ing as optimizer either SGD or SGD with Adagrad (ADG).

across 4 machines using up to 4 CPUs each. The number of
model replicas P has been set to 100. All parameters in the
weight matrices are intialized at random while the biases are
initialized at zero. Learning rates have been cross-validated.
Typically, HDNN uses a learning which is 10 times smaller
than a logistic DNN.

5.1. Supervised Learning Experiments
The results we report are obtained by training for one week.
In the first experiment shown in fig. 2, we compare the three
different optimization strategies we described in sec. 4, on a
4 hidden layer HNN initialized at random. In terms of wall
clock time to reach a given frame accuracy on the validation
set, Adagrad exhibits the fastest convergence time, although
plain SGD eventually reaches the same overall frame accu-
racy. Momentum instead performs slightly worse.

Similar findings were observed using a network with lo-
gistic units. However, plain SGD does not perform as well as
Adagrad in this case, see fig. 3. Unlike HNN, a logistic net-
work does need accelerated first order methods to yield good
frame accuracy. It seems that optimization is much harder
in logistic networks than HNNs. Fig. 3 shows that a logis-
tic network trained with Adagrad can achieve the same accu-
racy than a HNN trained with either Adagrad or even plain
SGD. However, we found that the performance in terms of

Zeiler et al.

Sparse propagation

Glorot et al., 2011

Specifying LeNet in Caffe
https://developers.google.com/protocol-buffers/docs/overview

name: "LeNet"

layer {
 name: "mnist"
 type: "Data"
 data_param {
 source: "mnist_train_lmdb"
 backend: LMDB
 batch_size: 64
 scale: 0.00390625
 }
 top: "data"
 top: "label"
}

layer {
 name: "conv1"
 type: "Convolution"
 param { lr_mult: 1 }
 param { lr_mult: 2 }
 convolution_param {
 num_output: 20
 kernel_size: 5
 stride: 1
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 }
 }
 bottom: "data"
 top: "conv1"
}

Data layer

Convolution layer

Max Pooling and RLU Layer

layer {
 name: "pool1"
 type: "Pooling"
 pooling_param {
 kernel_size: 2
 stride: 2
 pool: MAX
 }
 bottom: "conv1"
 top: "pool1"
}

Convolution layer

layer {
 name: "relu1"
 type: "ReLU"
 bottom: "ip1"
 top: "ip1"
}

RLU layer

Loss Layer

layer {
 name: "loss"
 type: "SoftmaxWithLoss"
 bottom: "ip2"
 bottom: "label"
}

RLU layer

MNIST solver in Caffe
The train/test net protocol buffer definition
net: "examples/mnist/lenet_train_test.prototxt"
test_iter specifies how many forward passes the test should carry out.
In the case of MNIST, we have test batch size 100 and 100 test iterations,
covering the full 10,000 testing images.
test_iter: 100
Carry out testing every 500 training iterations.
test_interval: 500
The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
Display every 100 iterations
display: 100
The maximum number of iterations
max_iter: 10000
snapshot intermediate results
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver mode: CPU or GPU
solver_mode: GPU

Running LeNet on Caffe
I0917 19:20:26.375691 26575 layer_factory.hpp:75] Creating layer mnist
I0917 19:20:26.375877 26575 net.cpp:110] Creating Layer mnist
I0917 19:20:26.375903 26575 net.cpp:432] mnist -> data
I0917 19:20:26.375928 26575 net.cpp:432] mnist -> label
I0917 19:20:26.378226 26581 db_lmdb.cpp:22] Opened lmdb examples/mnist/mnist_test_lmdb
I0917 19:20:26.378762 26575 data_layer.cpp:44] output data size: 100,1,28,28
I0917 19:20:26.380553 26575 net.cpp:155] Setting up mnist
I0917 19:20:26.380594 26575 net.cpp:163] Top shape: 100 1 28 28 (78400)
I0917 19:20:26.380614 26575 net.cpp:163] Top shape: 100 (100)
I0917 19:20:26.380635 26575 layer_factory.hpp:75] Creating layer label_mnist_1_split
I0917 19:20:26.380668 26575 net.cpp:110] Creating Layer label_mnist_1_split
I0917 19:20:26.380686 26575 net.cpp:476] label_mnist_1_split <- label
I0917 19:20:26.380707 26575 net.cpp:432] label_mnist_1_split -> label_mnist_1_split_0
I0917 19:20:26.380738 26575 net.cpp:432] label_mnist_1_split -> label_mnist_1_split_1

I0917 19:20:26.405414 26575 solver.cpp:266] Learning Rate Policy: inv
I0917 19:20:26.406183 26575 solver.cpp:310] Iteration 0, Testing net (#0)
I0917 19:20:26.601101 26575 solver.cpp:359] Test net output #0: accuracy = 0.0777
I0917 19:20:26.601132 26575 solver.cpp:359] Test net output #1: loss = 2.3651 (* 1 = 2.3651 loss)
I0917 19:20:26.604207 26575 solver.cpp:222] Iteration 0, loss = 2.34867
I0917 19:20:26.604233 26575 solver.cpp:238] Train net output #0: loss = 2.34867 (* 1 = 2.34867 loss)

I0917 19:20:59.081962 26575 solver.cpp:291] Iteration 10000, loss = 0.00325083
I0917 19:20:59.081985 26575 solver.cpp:310] Iteration 10000, Testing net (#0)
I0917 19:20:59.215575 26575 solver.cpp:359] Test net output #0: accuracy = 0.9904
I0917 19:20:59.215605 26575 solver.cpp:359] Test net output #1: loss = 0.0291382 (* 1 = 0.0291382 loss)
I0917 19:20:59.215615 26575 solver.cpp:296] Optimization Done.
I0917 19:20:59.215622 26575 caffe.cpp:184] Optimization Done.

real 0m34.403s
user 0m27.744s
sys 0m25.308s

New Stochastic Gradient
Methods

PrimalDual

xk+1 = r ⇤ (r (xk)� tk@f(xk))

Mirror Maps
(Nemirovski and Yudin, 1980s; Bubeck, 2014)

r�

r�⇤

xt
xt+1 X

r�(xt)

r�(yt+1)

gradient step

D

DUAL
SPACE

PRIMAL
SPACE

Rn

Legendre Transform

“Natural” Gradients on Manifolds

Grassmann Discriminant Analysis

Yi
Yj

θ 2

G(m, D)

u1
v1

θ1 , ..., θm

span(Yi)
span(Yj)

RD

Figure 1. Principal angles and Grassmann distances. Let span(Yi) and span(Yj) be two subspaces in the Euclidean space
RD on the left. The distance between two subspaces span(Yi) and span(Yj) can be measured by the principal angles
✓ = [✓1, ... , ✓m]0 using the usual innerproduct of vectors. In the Grassmann manifold viewpoint, the subspaces span(Yi)
and span(Yj) are considered as two points on the manifold G(m, D), whose Riemannian distance is related to the principal
angles by d(Yi, Yj) = k✓k2. Various distances can be defined based on the principal angles.

two metrics with other metrics used in the literature.

Several subspace-based classification methods have
been previously proposed (Yamaguchi et al., 1998;
Sakano, 2000; Fukui & Yamaguchi, 2003; Kim et al.,
2007). However, these methods adopt an inconsistent
strategy: feature extraction is performed in the Eu-

clidean space when non-Euclidean distances are used.
This inconsistency can result in complications and
weak guarantees. In our approach, the feature ex-
traction and the distance measurement are integrated
around the Grassmann kernel, resulting in a simpler
and better-understood formulation.

The rest of the paper is organized as follows. In Sec. 2
and 3 we introduce the Grassmann manifolds and de-
rive various distances on the space. In Sec. 4 we
present a kernel view of the problem and emphasize the
advantages of using positive definite metrics. In Sec. 5
we propose the Grassmann Discriminant Analysis and
compare it with other subspace-based discrimination
methods. In Sec. 6 we test the proposed algorithm for
face recognition and object categorization tasks. We
conclude in Sec. 7 with a discussion.

2. Grassmann Manifold and Principal

Angles

In this section we briefly review the Grassmann man-
ifold and the principal angles.

Definition 1 The Grassmann manifold G(m,D) is

the set of m-dimensional linear subspaces of the RD
.

The G(m,D) is a m(D�m)-dimensional compact Rie-
mannian manifold.1 An element of G(m,D) can be

1G(m, D) can be derived as a quotient space of orthog-
onal groups G(m, D) = O(D)/O(m) ⇥ O(D � m), where

represented by an orthonormal matrix Y of size D by
m such that Y

0
Y = Im, where Im is the m by m iden-

tity matrix. For example, Y can be the m basis vectors
of a set of pictures in RD. However, the matrix rep-
resentation of a point in G(m,D) is not unique: two
matrices Y

1

and Y

2

are considered the same if and only
if span(Y

1

) = span(Y
2

), where span(Y) denotes the
subspace spanned by the column vectors of Y . Equiva-
lently, span(Y

1

) = span(Y
2

) if and only if Y

1

R

1

= Y

2

R

2

for some R

1

, R

2

2 O(m). With this understanding, we
will often use the notation Y when we actually mean
its equivalence class span(Y), and use Y

1

= Y

2

when
we mean span(Y

1

) = span(Y
2

), for simplicity.

Formally, the Riemannian distance between two sub-
spaces is the length of the shortest geodesic connecting
the two points on the Grassmann manifold. However,
there is a more intuitive and computationally e�cient
way of defining the distances using the principal angles

(Golub & Loan, 1996).

Definition 2 Let Y

1

and Y

2

be two orthonormal

matrices of size D by m. The principal an-

gles 0 ✓

1

 · · · ✓m ⇡/2 between two subspaces

span(Y
1

) and span(Y
2

), are defined recursively by

cos ✓k = max
uk2span(Y1)

max
vk2span(Y2)

uk
0
vk, subject to

uk
0
uk = 1, vk

0
vk = 1,

uk
0
ui = 0, vk

0
vi = 0, (i = 1, ..., k � 1).

In other words, the first principal angle ✓

1

is the small-
est angle between all pairs of unit vectors in the first
and the second subspaces. The rest of the principal

O(m) is the group of m by m orthonormal matrices. We
refer the readers to (Wong, 1967; Absil et al., 2004) for
details on the Riemannian geometry of the space.

In a manifold, gradients live in the tangent space,
not in the original space

Loss Function

(w∗,Φ∗) = argminw,ΦG(Φ, w)

G(Φ, w) = (Rπ + γP πΦw − Φu)

F (Φ) = min
w

G(Φ, w)

Riemannian gradient
∇F

∇Φ
= (I − ΦΦT)

∇F

∇Φ

CMPSCI 689 – p. 2/2

Mirror Descent => “Natural” Gradient
(Nemirovsky and Yudin; Amari, 1980s)

Natural gradientMirror Descent

Thomas, Dabney, Mahadevan, Giguere, NIPS 2013

Mirror Map

Natural Neural Network
(DesJardin et al., Deep Mind, 2015)

*RRJOH�FRQILGHQWLDO�DQG�SURSULHWDU\

✓t ✓t+1

⌦t ⌦t+1 ⌦t+T

F (✓t)
1
2 F (✓t)

�1
2

Figure 1: (a) A 2-layer natural neural network. (b) Illustration of the projections involved in PRONG.

where X(i, j) is the element at row i and column j of matrix X and x(i) is the i-th element of vector
x. F

Wi(km, ln) is the entry in the Fisher capturing interactions between parameters W

i

(k,m)

and W

j

(l, n). Our hypothesis, verified experimentally in Sec. 4.1, is that we can greatly improve
conditioning of the Fisher by enforcing that E

⇡

⇥
h

i

h

T

i

⇤
= I , for all layers of the network, despite

ignoring possible correlations in the �’s and off block diagonal terms of the Fisher.

3 Projected Natural Gradient Descent

This section introduces Whitened Neural Networks (WNN), which perform approximate whitening
of their internal hidden representations. We begin by presenting a novel whitened neural layer,
with the assumption that the network statistics µ

i

(✓) = E[h
i

] and ⌃

i

(✓) = E[h
i

h

T

i

] are fixed.
We then show how these layers can be adapted to efficiently track population statistics over the
course of training. The resulting learning algorithm is referred to as Projected Natural Gradient
Descent (PRONG). We highlight an interesting connection between PRONG and Mirror Descent in
Section 3.3.

3.1 A Whitened Neural Layer

The building block of WNN is the following neural layer,
h

i

= f

i

(V

i

U

i�1 (hi�1 � c

i

) + d

i

) . (6)

Compared to Eq. 4, we have introduced an explicit centering parameter c
i

= µ

i

, which ensures
that the input to the dot product has zero mean in expectation. This is analogous to the centering
reparametrization for Deep Boltzmann Machines [13]. The weight matrix U

i�1 2 RNi�1⇥Ni�1 is a
per-layer ZCA-whitening matrix whose rows are obtained from an eigen-decomposition of ⌃

i�1:

⌃

i

=

˜

U

i

· diag (�
i

) · ˜UT

i

=) U

i

= diag (�

i

+ ✏)

� 1
2 · ˜UT

i

. (7)

The hyper-parameter ✏ is a regularization term controlling the maximal multiplier on the learning
rate, or equivalently the size of the trust region. The parameters V

i

2 RNi⇥Ni�1 and d

i

2 RNi are
analogous to the canonical parameters of a neural network as introduced in Eq. 4, though operate
in the space of whitened unit activations U

i

(h

i

� c

i

). This layer can be stacked to form a deep
neural network having L layers, with model parameters ⌦ = {V1, d1, · · ·VL

, d

L

} and whitening
coefficients � = {U0, c0, · · · , UL�1, cL�1}, as depicted in Fig. 1a.

Though the above layer might appear over-parametrized at first glance, we crucially do not learn
the whitening coefficients via loss minimization, but instead estimate them directly from the model
statistics. These coefficients are thus constants from the point of view of the optimizer and simply
serve to improve conditioning of the Fisher with respect to the parameters ⌦, denoted F⌦. Indeed,
using the same derivation that led to Eq. 5, we can see that the block-diagonal terms of F⌦ now
involve terms E

⇥
(U

i

h

i

)(U

i

h

i

)

T

⇤
, which equals identity by construction.

3.2 Updating the Whitening Coefficients

As the whitened model parameters ⌦ evolve during training, so do the statistics µ
i

and ⌃

i

. For our
model to remain well conditioned, the whitening coefficients must be updated at regular intervals,

3

Builds on our recent identification of mirror descent and
natural gradient methods

Group Midterm Project
• Atari Game Deep Reinforcement Learning

• Each group will be tested on the same suite of Atari
problems

• Groups will be given code to run the Atari games
and the deep learning package(s)

• Groups are free to modify hyperparameters or
introduce architectural innovations

Summary
• Training deep neural networks is an old idea

• The original back propagation idea goes back to the
early 80s (or even before!)

• Sigmoid units have the problem of vanishing gradients

• New rectified linear units provide improved results

• Faster stochastic gradient methods are being used

• Start working more actively with Caffe, Theano etc.

